If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+141=96x
We move all terms to the left:
16x^2+141-(96x)=0
a = 16; b = -96; c = +141;
Δ = b2-4ac
Δ = -962-4·16·141
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-8\sqrt{3}}{2*16}=\frac{96-8\sqrt{3}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+8\sqrt{3}}{2*16}=\frac{96+8\sqrt{3}}{32} $
| 3×+4y=-19 | | a2+2a+1=a+5 | | a2+2a-4=a | | A/e-3=11 | | 4(-2y-1)4y=20 | | 4(n+1)=18 | | 3x-0+6=0 | | 22=r+(-23) | | 21=2n+13 | | Z=2y-3× | | 9y-10=71 | | 23.4=-3x | | Y=2x(x-3)=-5 | | X2+11x+31=3 | | 2x+8=-3.5 | | 7x=9.1 | | 9x÷16=81 | | X-((8-4x)/4)+2=0 | | 3m-25=m-5 | | -3/5-x/4=5/3 | | 7m-58=-37 | | -(5a+9)+a=7 | | 30x+0=22x+80 | | (2y-4)+8y=16 | | 20x^2-7x=6. | | X=-2+4y | | 20x2^2-7x=6. | | 2x+225000=550000000 | | 3x2+10x-25=0 | | 9m-8=3m+4 | | (0.04-x)/x=1.99 | | (9+2x)*3=9+3x |